



Trusted Heating Solutions

---

## RHeco

Condensing Low NO<sub>x</sub> High Efficiency  
Suspended Gas Fired Unit Heaters

---



ErP Lot 21  
Seasonal Efficiency and  
NOx compliant



**NGH**  
NORTEK GLOBAL HVAC™



# RHeco

## Low NO<sub>x</sub> High Efficiency Condensing Unit Heaters

Reznor continue their tradition of manufacturing high efficiency warm air heating equipment with the introduction of the new high efficient RHeco series of energy saving condensing gas fired unit heaters.

The RHeco range provides the highest efficiency levels and substantially reduced CO<sub>2</sub> & NO<sub>x</sub> emissions (under 25ppm).

The units exceed the requirements of current Building Regulations L2, with thermal efficiencies up to 109% to provide exceptional levels of seasonal efficiency. Also the extremely low NO<sub>x</sub> modulating pre-mix burner enables BREEAM points to be claimed (when applicable).

These 4th generation units utilise a tubular primary heat exchanger and a secondary condensing heat exchanger with an aerodynamic profile and 4-pass flue gas circuit.

Five models of RHeco units are available with heat outputs ranging from 25kW to 95kW for use on natural gas or propane.

An (optional) modulating supply air fan is available for all sizes of unit.

## Features & Benefits

- Thermal efficiency of 98% at full load and up to 109% at minimum load for lower operational costs
- Substantially reduced CO<sub>2</sub> and NO<sub>x</sub> emissions (under 25 ppm) being considerably lower than the emissions of the previous generation of unit heaters and exceeding European standards making the units ideal for new low carbon buildings (class NOx 5)
- Reduced energy bills - up to 35% energy saving on replacement heaters
- Burner with new "pull through" combustion technology. Negative pressure ensures that no gas or flue gas can escape into the heated space
- 5:1 turn down ratio for close temperature control. Reduced temperature gradients help prevent stratification
- Versatile flue options (top or rear connections) for ease of installation
- High flow axial fan for a powerful air throw, decreases stratification and improves heat distribution
- Optional EC modulating axial supply air fan (100 to 50%). Full speed when full burner rate, 50% fan speed when burner at 20%. Fan modulates between these two points

## Advanced Heat Exchanger Technology

Superior performance is achieved by using an advanced technology 'serpentine' heat exchanger, along with a tubular primary heat exchanger.

As the flue gases pass through the secondary heat exchanger the increased surface area cools the flue gases below 45°C causing water vapour to condense and release its latent heat

This heat, which would normally be lost to the atmosphere via the flue, is instead transferred into the building hence less fuel is used to achieve the same heat output.

The high efficiency levels are not dependent on the firing rate and the units are permanently condensing with constant low flue gas temperatures.

This results in far lower energy consumption and carbon emissions compared to other types of condensing unit which only achieve comparable efficiency levels at reduced heat outputs.

## Optimum Economy and Fuel Savings

In times of rapidly increasing energy costs, reducing energy consumption makes sense both financially and environmentally since this also significantly reduces CO<sub>2</sub> emissions.

Although condensing air heaters require a higher initial capital investment they are very economical and can repay the extra initial cost in fuel savings in less than 2-4 years depending on usage.

When replacing traditional units more than 10 years old savings of 30% can be achieved.

## Modulating Fan (optional)

An EC modulating fan is available as an option. This fan will automatically modulate down to 50% full speed as the burner modulates. When the burner is at 20% the fan will run at 50% (see graph below).

Use of this option will increase the leaving air temperature of the unit when on low fire, thus reducing the risk of cold draughts being created.

## Applications

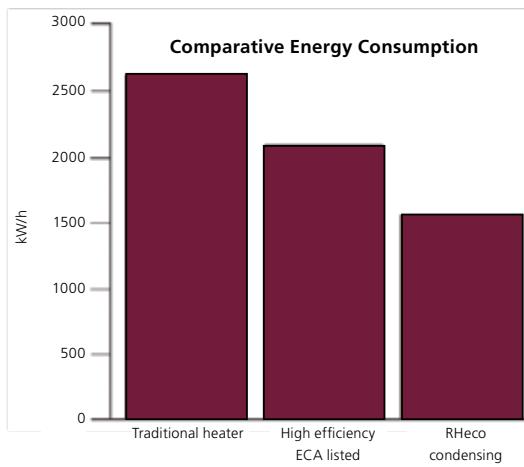
- Workshops
- Factories
- Warehouses and distribution
- Exhibition halls
- Retail shops and outlets
- Sports facilities and halls

## Condensate trap

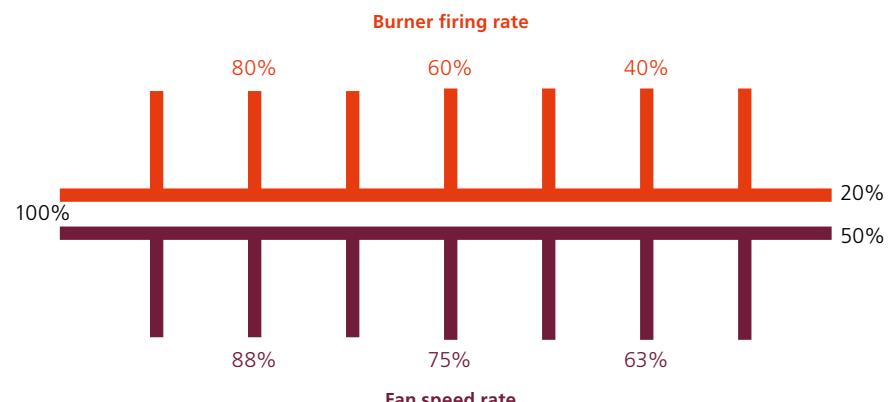
Units are fitted with an internal condensate trap keeping the installation neater and quicker for the installer.



## Enhanced Reliability and Safety


A microprocessor burner control provides full safety monitoring and multi-try ignition control for enhanced reliability.

Limit stats monitor the operating temperature within the heater unit and shut down the burner in the event of overheating. For additional safety all models are fitted with dual limit stats.


A differential pressure switch shuts down the unit in the event of fan failure / inadequate airflow.

## Ease of Maintenance

All controls are accessible from a single side and are housed behind a hinged door, situated on the left hand side of the unit when viewed from the rear. The hot gas exhaust fan is housed in a separate adjacent compartment.



Graph showing relationship between burner firing rate and fan speed for optional modulating fan



### Primary Heat Exchanger

Manufactured from high quality corrosion resistant steel, the entirely new primary heat exchanger reduces thermal stress for enhanced life expectancy.

This tubular heat exchanger is welded to the burner box using the newest robotic welding technology to form a highly resistant and durable assembly.

### Secondary Heat Exchanger

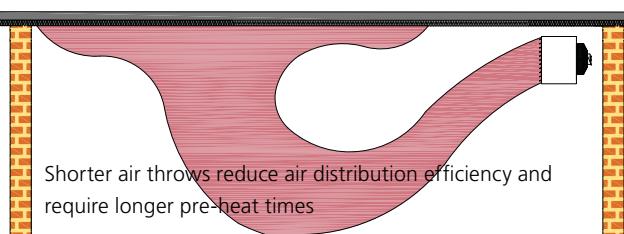
The secondary heat exchanger is manufactured using high quality corrosion resistant materials, the non-welded design of the heat exchanger reduces thermal stress for enhanced life expectancy. This heat exchanger constitutes the second part of the flue gases which condenses in a 4-pass circuit in order to release their latent heat.

The streamlined aerodynamic profile of the secondary heat exchanger results in minimal resistance to airflow to give longer throws and improved air distribution, which reduces energy consumption.

Originally, used as a primary heat exchanger in other Reznor unit heaters, this proven design is now integrated into the RHeco's new assembly as a secondary heat exchanger.

### Venter fan

The plastic corrosion resistant flue fan provides a negative pressure that ensures that gases can not escape and can only be exhausted through the flue system.


Units are fully room sealed to prevent dirt or dust from entering the combustion system.

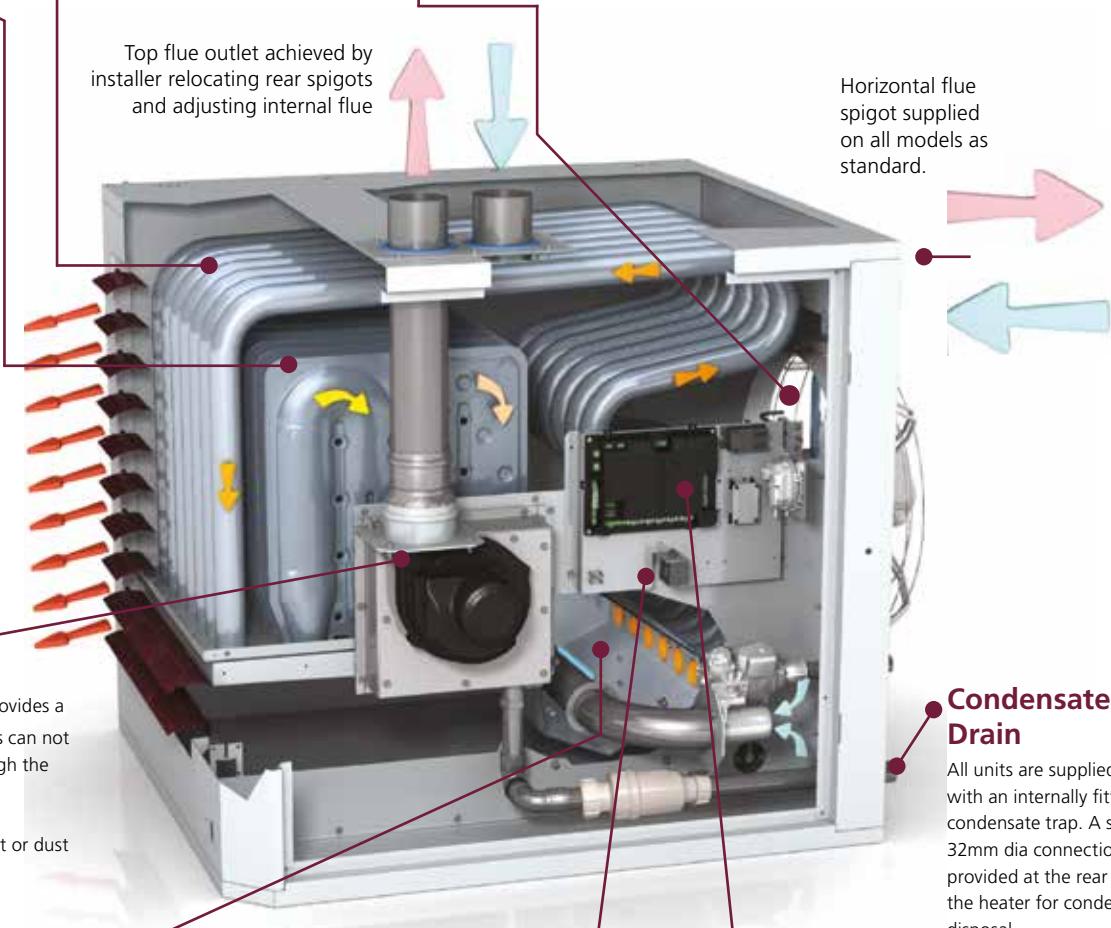
### Modulating Burner

Modulating burner technology utilises a single low NO<sub>x</sub> burner, with multi-try ignition for optimum reliability and ease of maintenance.

### Traditional unit heater

Higher roof space temperatures increase heat loss through roof




### Air Distribution

A high capacity axial flow fan is fitted to all units for improved air throw and reduced stratification.

The fan operation is controlled by an integral controller which delays the fan start up until the heat exchanger has reached operating temperature and continues to run the fan after the burner has switched off until all useful heat has been dissipated.

An optional EC axial modulating supply air fan may be fitted to heaters. This will allow the fan speed to automatically modulate between 100 to 50% (burner will be at 20% when fan runs at 50%). Once 50% has been reached the fan will no longer modulate downwards. Please note that the use of destratification fans is strongly recommended when choosing a modulating supply fan

An optional economy thermostat may also be fitted to heaters installed at high level to recirculate warm air down to working level when the burner is switched off.



### Electrical Components

All electrical components are accessible from one side of the unit heater through a full width hinged door. The electrical components are housed in the same compartment as the flue fan in order to facilitate installation and service.

### RHeco heater

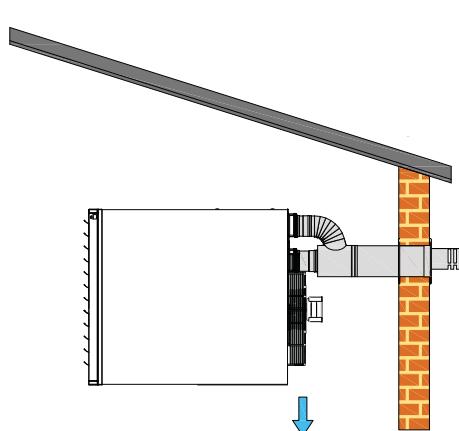
Reduced floor to ceiling temperature gradients

Longer air throws provide even heat distribution and reduce pre-heat times

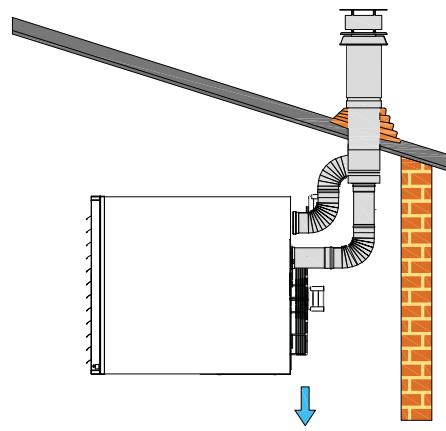
## Installation

Units may be suspended or alternatively mounted on a suitable non-combustible support. Four integral suspension points complete with an M10 female thread are provided to each heater.

The balanced flue terminal provides both the combustion air inlet and flue outlet from a single building penetration. The terminals are ordered separately from the heaters to suit either a wall or roof outlet.


Additional flue and combustion air pipes may be added, up to a maximum of nine metres of flue pipe, plus nine metres of combustion air pipe. This reduces by 1.5 metres for every 90° bend fitted.

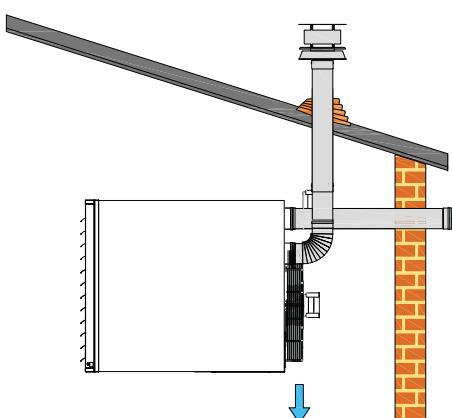
To comply with CE approvals, balanced flue appliances must be used with the manufacturer's balanced flue system. The units are also certified for fan assisted flue installations, where the combustion air is to be drawn from within the heated space; an alternative wall or roof terminal is required for this application.


A single phase electrical supply is required to each unit. This supply should not be switched off except for maintenance.

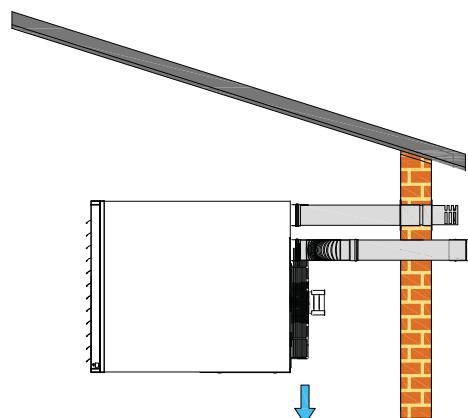
Units must not be installed in atmospheres containing highly flammable or explosive vapours, combustible dust, halogenated hydrocarbons or chlorinated vapours. They are also unsuitable for areas where contaminants may affect electrical motors or connections.

A condensate drain must be installed in accordance with local regulations. Condensate traps are supplied with each heater, additional suitably designed condensate pipework must be supplied by the installer.




Condensate Drain Required




Condensate Drain Required

Balanced flue wall outlet (type C12)  
eliminates expensive roof opening and flashing

Balanced flue roof outlet (type C32)



Condensate Drain Required



Condensate Drain Required

Combustion air through wall, flue outlet through the roof (C52)

Separate combustion air and flue pipes (type C12) for applications where wall thickness exceeds maximum length shown in flue dimension table

### SmartCom

Environmental issues dictate that buildings need to operate as effectively and efficiently as possible. Plus increasing fuel costs have resulted in consulting engineers, contractors and end users becoming increasingly energy conscious.

Reznor SmartCom, the intelligent energy management controller satisfies the growing need for higher efficiencies and to complement the development of energy efficient heating systems.

Simple to program and operate, SmartCom<sup>3</sup> provides cost-effective energy management for small single heater installations through to large multi-zone applications requiring centralised control.

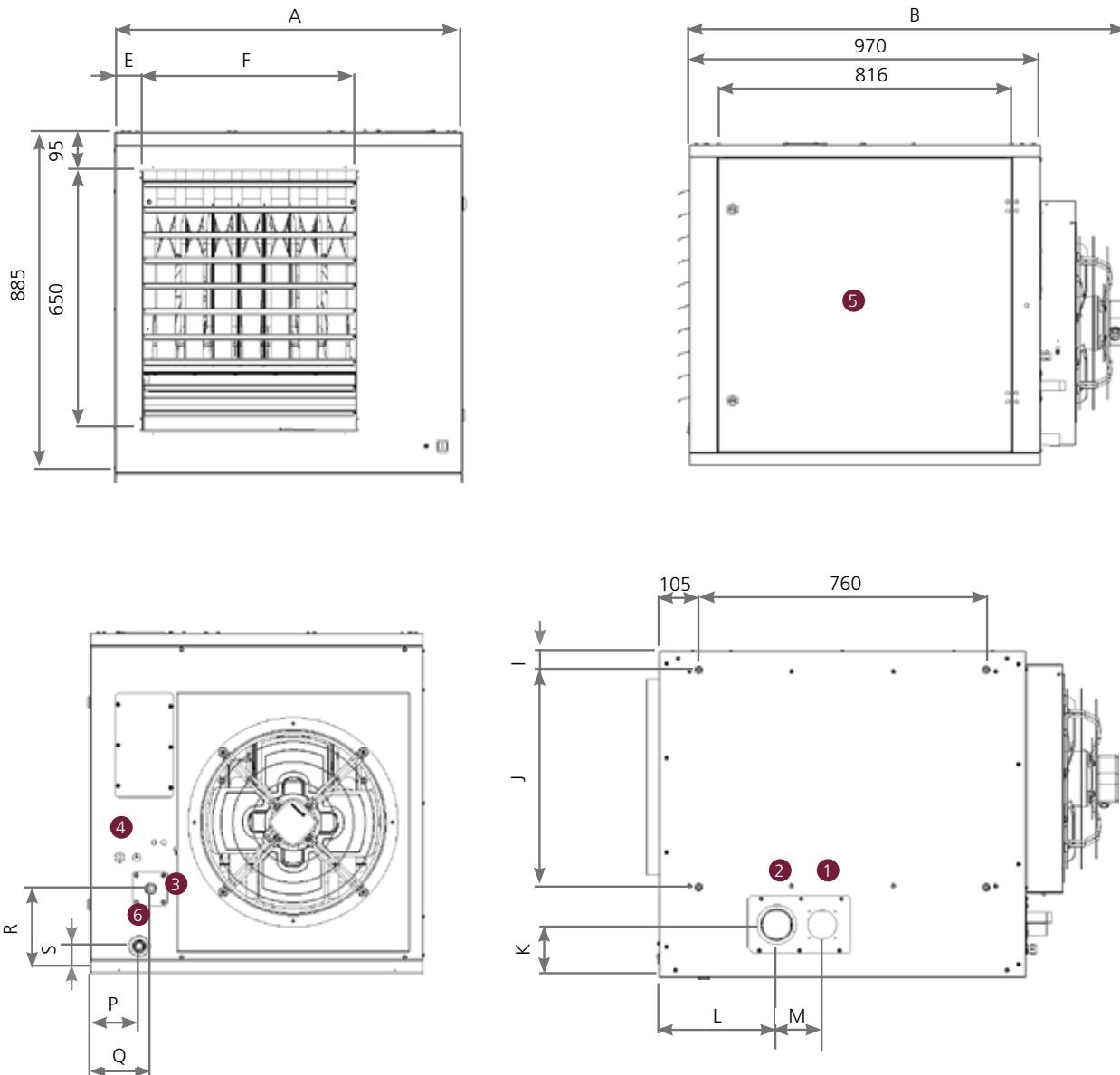
### Additional Control at the Touch of a Button

To complement the high efficiency RHECO units a versatile range of SmartCom control panels are available.

- > Self-adapting optimum start and stop
- > Simple user-friendly programming
- > Individual seven day programming
- > Day, night and frost (5°C) temperature settings
- > Three on/off periods per day
- > Easy set overtime and holiday periods
- > Remote burner reset facility
- > Password protection to prevent unauthorised adjustment
- > Hours run and service data logging
- > Battery back up in the event of mains failure

### Multi-zone Control

Allows up to 16 units to be centrally controlled. Functions controlled by the master unit include:


- > Clock updating
- > Updating temperature functions and programme settings
- > Viewing the current temperature and target
- > Setting holiday, overtime and vent only functions for the entire network
- > Centralised burner lock out reset



### Technical Data

| RHECO Model                                       | ULSA-2 / ULSA-2 EC |                   |        |                       |        |        |
|---------------------------------------------------|--------------------|-------------------|--------|-----------------------|--------|--------|
|                                                   | 025                | 035               | 050    | 075                   | 100    |        |
| Maximum heat output                               | kW                 | 25.0              | 32.7   | 49.4                  | 69.2   | 93.8   |
| Minimum heat output                               | kW                 | 5.5               | 7.0    | 11.0                  | 15.3   | 20.2   |
| Maximum thermal efficiency at maximum heat output | %                  | 98.30             | 98.00  | 98.60                 | 98.60  | 98.60  |
| Maximum thermal efficiency at minimum heat output | %                  | 109.20            | 108.80 | 108.70                | 106.50 | 108.90 |
| Gas consumption at maximum heat input (1)         | Natural gas G20    | m <sup>3</sup> /h | 2.59   | 3.39                  | 5.07   | 7.27   |
|                                                   | Propane G31        | kg/h              | 1.99   | 2.60                  | 3.93   | 5.51   |
| Gas consumption at minimum heat input (1)         | Natural gas G20    | m <sup>3</sup> /h | 0.55   | 0.69                  | 1.09   | 1.52   |
|                                                   | Propane G31        | kg/h              | 0.40   | 0.51                  | 0.80   | 1.12   |
| Air volume at 15°C                                | m <sup>3</sup> /h  | 2900              | 3700   | 5600                  | 7900   | 10500  |
| Temperature rise at maximum load                  | °C                 | 25                | 26     | 26                    | 26     | 26     |
| Horizontal throw (2)                              | m                  | 20                | 23     | 30                    | 30     | 36     |
| Sound pressure level (3)                          | dB(A)              | 44                | 49     | 52                    | 47     | 58     |
| Sound pressure level minimum speed (3), (6)       | dB(A)              | 38                | 34     | 35                    | 35     | 40     |
| Maximum absorbed power                            | W                  | 200               | 300    | 500                   | 600    | 1240   |
| Gas connection (4)                                | Rc                 | 1/2"              |        | 3/4"                  |        |        |
| Electrical connection                             |                    |                   |        | 230/240V ~ 1N ~ 50 Hz |        |        |
| Flue and combustion air connection                | mm                 | 80                |        | 100                   |        |        |
| Condensate quantity                               | l/h                | 1.3               | 1.5    | 2.0                   | 2.5    | 3.5    |
| Recommended mounting height (5)                   | m                  | 3.0               | 3.5    | 3.5                   | 4.0    | 4.0    |
| Net weight                                        | kg                 | 112               | 129    | 141                   | 197    | 243    |

1. Natural gas G20 calorific value 10.48k W/m<sup>3</sup> GCV, inlet gas pressure maximum 50mbar, minimum 17.5mbar. Propane G31 calorific G31 value 14.0k W/kg GCV, inlet gas pressure maximum 50mbar, minimum 37mbar.
2. Throw is dependent on mounting height, building height, room temp and louvre settings. Isothermal conditions @20°C ambient air temp, discharge louvre zero deflection. v=0.5m/s
3. Measured @ 5m from unit with Q=2, A=160m<sup>2</sup>
4. Not supply size
5. To underside of heater. Downturn nozzles are recommended for units installed at higher mounting heights. For units fitted with optional modulating supply fan, air re-circulation fans are strongly recommended.
6. Only applicable to units fitted with optional modulating fan



| Dimensions         |      |      |        |     |      |                |    |      |     |     |     |     |     |    |     |  |
|--------------------|------|------|--------|-----|------|----------------|----|------|-----|-----|-----|-----|-----|----|-----|--|
| ULSA-2 / ULSA-2 EC | A    | B    | C Ø    | D Ø | E    | F              | I  | J    | K   | L   | M   | P   | Q   | R  | S   |  |
| 025                | 738  | 1203 | 1/2" G | 80  | 77.5 | 405            | 55 | 449  | 135 | 311 | 120 | 106 | 154 | 70 | 220 |  |
| 035                | 738  | 1203 | 1/2" G | 80  | 77.5 | 405            | 55 | 449  | 135 | 311 | 120 | 122 | 145 | 70 | 220 |  |
| 050                | 865  | 1211 | 3/4" G | 80  | 69   | 531            | 50 | 576  | 140 | 311 | 120 | 127 | 154 | 70 | 220 |  |
| 075                | 1177 | 1211 | 3/4" G | 100 | 129  | 760            | 78 | 860  | 148 | 290 | 140 | 135 | 145 | 70 | 220 |  |
| 100                | 1433 | 1215 | 3/4" G | 100 | 76   | 531<br>(2 off) | 50 | 1144 | 148 | 290 | 140 | 135 | 255 | 71 | 222 |  |

1. Combustion air inlet (D)
2. Flue Connection (D)
3. External Gas Connection (D)

4. Electrical Connections
5. Service Access Panel
6. Condensate Drain (32mm)

## Other products in the Reznor range:-

- Warm air heaters
- Radiant heating
- Destratification fans
- Heating & ventilation units
- Packaged rooftop units
- Air induction systems
- Gas fired heater modules
- Evaporative cooling



Registered in England No. 01390934 | Registered Office: Fens Pool Avenue, Brierley Hill, West Midlands, DY5 1QA

Nortek Global HVAC is a registered trademark of Nortek Global HVAC Limited. Because of continuous product innovation, Nortek Global HVAC reserves the right to change product specification without due notice.

NORTEK GLOBAL HVAC (UK) LTD  
Fens Pool Avenue  
Brierley Hill  
West Midlands DY5 1QA  
United Kingdom

Tel: +44 (0)1384 489 700  
Fax: +44 (0)1384 489 707

reznorsales@nortek.com  
[www.reznor.eu](http://www.reznor.eu)